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This is an introductory non exhaustive set of notes for Instrumental Variables (IV in

the remaining). See references and textbook for more extensive and detailed notes.

1 Introduction to IVs

There are three main situations in which we will need to resort to IVs.

1. Simultaneity

2. Omitted Variable Bias

3. Measurement error

Consider the following (true) model

(1) yi = α + β1xi + β2ai + εi

Where x and a jointly determine y. Assume that we cannot observe a (hence, it could

be something like the individual’s ability), and furthermore, that a and x are correlated.

Hence the only model we can run is

(2) yi = α + β1xi + εi

We know that β̂1 will be biased. In particular, if the correlation between a and x is

positive, it will be an upward bias.

Recall from earlier parts of the course that

(3) E(β̂1) = β1 + β2
cov(a, x)

var(x)

Hence, our measure is biased. What can we do? One way is to get a proxy for ability,

but that’s not always available. The alternative is to find what we call an instrumental

variable for x. That is, a variable that explains x, isn’t correlated with a, and can only
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explain y through its effect on x (see examples below).

Technically, find a variable (that we will call z) such that:

1. ρ(x, z) 6= 0

2. ρ(z, η) = 0 where ηi = β2ai + εi

The first condition means that z explains x. The second one means that z cannot

explain y other than through its effect on x. This is called the exclusion restriction. We

can never test the second one, since we cannot observe a in this case. Hence, economists

spend a great deal of time and effort arguing why the second condition is met.

2 Three examples

2.1 Example 1: Institutions and economic success

Acemoglu, Johnson and Robinson have one of the most influential ever pieces in economics.

Published in 2001, it has been cited, as of today, 8,746 times.1 The paper is called The

Colonial Origins of Comparative Development: An Empirical Investigation.

The goal of their paper is to find out whether good institutions actually lead to better

economic outcomes. But we know that this is quite hard to disentangle, as good economic

outcomes actually are likely to result in good institutions, too. So we have simultaneity:

y affects x and x affects y. What to do?

AJR came with a quite clever way to circumvent this. They realised that Europeans,

when they colonized Africa at the beginning, didn’t stay in all areas. Some colonies

became ‘extractive colonies’: these were the ones where Europeans didn’t settle: they

just tried to extract as many resources as possible. On the other hand, they chose to say

in some others, which became ‘settling colonies’. AJR argue that the kind of institutions

Europeans created were very different and have persisted until today. To make it simple,

the ones in the extractive colonies were bad, whereas the ones in the ‘settling colonies’ were

good. Most importantly, AJR argue that the choice was exogenous: Europeans decided

to stay in those areas in which their mortality rates were low.

This is the key: mortality rates of Europeans were caused by local diseases, mosquitos,

etc. Hence, exogenous to Europeans. Moreover, it can also be argued that those local

conditions have very little to do with current economic outcomes. Hence, we have an

instrument: settler’s mortality. Does it abide by the two conditions above stipulated?

1To give some perspective, other top influential articles are H.White, ‘A heteroskedasticity-consistent
covariance matrix estimator and a direct test for heteroskedasticity’, Econometrica, 1980 (22,546 cita-
tions), or Kahneman and Tversky, ‘Prospect theory: An analysis of decision under risk’, Econometrica,
1979 (39,558 citations). AJR’s paper was published in the American Economic Review. Note that it was
published 20 years after these two key papers, which means that in terms of citations per year, it’s doing
quite ok, too
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(i) Settler’s mortality rates are correlated with quality of institutions. This is some-

thing that we can check. We just need to relate mortality rates and the quality institutions

created. AJR show that there is a correlation.

(ii) Settler’s mortality rates three hundred years ago cannot affect current economic

outcomes - the only way they could affect them is by means of the institutions that

resulted from those differences.

Hence, they use settler’s mortality rates as an IV for quality of institutions. In case

you’re interested, they estimated large effects of institutions on income per capita.

2.2 Example 2: Policemen and crime

Steve Levitt, co-author of the Freakonomics series, also has a paper that serves as a good

example of IV use: Using Electoral Cycles in Police Hiring to Estimate the Effects of

Police on Crime.

Levitt tries to solve the usual dilemma: the observed correlation between crime and

policemen on the streets is positive. Does it mean that the more police we have, the more

crime we induce? or does it mean that we have more police in places in which there is

more crime? If that is the case, how can we tell whether police actually helps to deter

crime?

Levitt notices that the number of policemen hired increases considerably during elec-

tion periods - or better said, the 12 months before an election. He also argues that election

years are uncorrelated to crime - how could they be? Years are just numbers, they cannot

affect crime.

In other words, the true model is

(4) CRIMEit = α + β1POLICEit +Xitβ2 + εit

where t stands for period and i stands for location. X is a vector of characteristics of

location i at time t.

Note that again both conditions are hold. Namely, (i) election years affect police hiring

clearly (since incumbents realise that having more policemen before elections increases

their popularity); and (ii) election years do not affect crime, and crime (should) not

affect election years.

It is worth noting that election years do affect crime in an indirect way. Quoting

Levitt, “the most obvious ways in which elections might systematically affect the crime

rate (other than via changes in the police force) are through electoral cycles in other

types of social spending, or through politically induced fluctuations in economic perfor-

mance. Consequently, spending on education and public welfare programs is included in

the equations, as are state unemployment rates. Having controlled for this items, it seems
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plausible to argue that election timing will be otherwise unrelated to crime”.

So to be precise, the true model is

(5) CRIMEit = α+βpPOLICEit+βeEDUCit+βwPWELFit+βuUNEMPit+Xitγ+εit

where CRIMEit is number of crimes in i in period t, POLICEit is number of policment

in i in period t, EDUCit and PWELFit refer to the investments in education and public

welfare programmes in i in period t, UNEMPit refers to state unemployment levels in i

in period t, and Xit is a vector of other controls.

Once we introduce the IV variables, this will become

(6) CRIMEit = α+βpELECTit+βeEDUCit+βwPWELFit+βuUNEMPit+Xitγ+εit

where ELECTit is a dummy that takes value 1 if location i had elections at time t.

Since education, welfare etc, are included in the regression, ELECTit is uncorrelated with

the errors, and hence there is no reason to suspect any bias. If they were not included,

then ELECTit would not be doing a good job as an IV.

2.3 Example 3: Wages

Controlling for unobserved ability is another classical example of the need for IVs. Typi-

cally,

(7) log(ωi) = α + β1xi + β2ai + εi

where xi measures the qualifications of i(could be a dummy or a continuous variable).

In the above notation, log(ωi) = α + β1xi + ηi

So we need to find an instrument z for a such that

corr(z, x) 6= 0

corr(z, η) = 0

3 Estimating β̂IV

Let’s use the third example as the case in point. Assume the true model is as above

(8) log(ωi) = α + β1xi + β2ai + εi
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Further assume z is a good instrument for x. Then, if we have one regressor only, one

candidate is for β̂IV is

(9) β̂IV =
cov(y, z)

cov(x, z)

It is a good candidate because E(β̂IV ) = β1. The sketch of a proof follows:

Proof. E(β̂IV ) = cov(α+β1x+β2ai+εi,z)
cov(x,z)

= cov(α,z)
cov(x,z)

+ cov(β1x,z)
cov(x,z)

+ cov(β2ai,z)
cov(x,z)

+ cov(εi,z)
cov(x,z)

=

0 + β1
cov(x,z)
cov(x,z)

+ β2
cov(ai,z)
cov(x,z)

+ cov(εi,z)
cov(x,z)

= β1
cov(x,z)
cov(x,z)

since the last two terms are 0 given the

(assumption of) the exclusion restriction.

It can also be shown that plimβ̂IV = β1.

Note:

β̂IV =
cov(y, z)

cov(x, z)
=
cov(y, z)/var(z)

cov(x, z)/var(z)
=
δ̂

γ̂

where γ̂ and δ̂ are the estimated coefficients from (10) and (11) respectively:

(10) x = α1 + γz + u1

(11) y = α2 + δz + u2

Efficiency is greater with instruments that are more highly correlated with x , while

still uncorrelated with the error terms.

4 Estimating β̂IV when there is more than one re-

gressor: 2SLS

2SLS stands for Two Stage Least Squares.

Some concepts:

1. Causal relation of interest: y = α + β1x+ η

2. First stage regression: x = α1 + γz + u1

3. Second stage regression: y = α + β1x̂+ ε

4. Reduced form: y = α2 + δz + u2

As the name says, generally two steps are taken:

1. Estimate x = α1 + γz + u1 and get the predicted values x̂ = α̂1 + γ̂z
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2. Second stage regression: plug in the predicted values and estimate y = α+ β1x̂+ ε

Generally Stata will do both at once and compute correct standard errors.

The intuition of 2SLS is very useful: 2SLS only retains the variation in x that is

generated by quasi-experimental variation (and thus hopefully exogenous).

4.1 2SLS in matrix notation

1. Run X = Zγ + u1. Note Z may be a variable or a set of variables.

2. Get γ̂ and compute X̂ = Zγ̂ = Z(Z ′Z)−1Z ′X = PZX

Recall that we saw earlier in the course what we call projection matrices PX : they

are symmetric and idempotent. In this case, the projection matrix is PZ , since we are

projecting X onto the space generated by Z.

3. Plug X̂ = PZX in y = Xβ1 + ε ⇒ y = X̂β1 + ε

4. Run OLS of y = X̂β1 + ε and get β̂2SLS:

β̂2SLS = (X̂ ′X̂)−1X̂ ′y

= ((PZX)′PZX)
−1

(PZX)′y

= (X ′P ′ZPZX)
−1
XP ′Zy

= (X ′PZPZX)
−1
XP ′Zy

= (X ′PZX)
−1
XP ′Zy

(12)

although some people prefer to write it this way:

β̂2SLS = (X̂ ′X̂)−1X̂ ′y

= ((PZX)′PZX)
−1

(PZX)′y

= (X ′P ′ZPZX)
−1

(PZX)′y

= (X ′PZPZX)
−1

(PZX)′y

= (X ′PZX)
−1

(PZX)′y

= ((P ′ZX)′X)
−1

(PZX)′y

= ((PZX)′X)
−1

(PZX)′y

=
(
X̂ ′X

)−1
X̂ ′y

(13)

Note that β̂2SLS = β̂OLS in the special case where zi = xi and hence x̂i = xi. This

is very intuitive - if we project xi on itself, we obtain perfect predictions and the second

stage of 2SLS coincides with the standard OLS regression.

The previous expressions for the 2SLS estimator remain valid when we have several

explanatory variables (in the row vector x′i) and several instrumental variables (in the row
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vector z′i), in place of the scalars xi and zi.

Only in the (just-identifed) special case where we have the same number of instruments

as we have explanatory variables (i.e. where the row vectors x′i and z′i have the same

number of columns), we can also express the 2SLS estimator as

β̂2SLS = (Z ′X)
−1
Z ′y

Proof: problem set

You should be able to show that β̂2SLS = β̂IV when there is only one regressor.

4.1.1 What if some variables are exogenous but some are not?

So far, all algebra seems to be based on the fact that all explanatory variables (the xs)

are endogenous. But we will find cases in which only some are, whereas some others are

not (that is, they are not correlated to the error term). This is the more general case.

Formally,

y = α +Xβ + δW + ε

X is a vector of m endogenous variables (i.e. corr(X, ε) 6= 0). W is a vector of k

exogenous variables (i.e. corr(W, ε) = 0). To be precise,

y = α + β1x1 + β2x2 + ...+ βmxm + δ1w1 + δ2w2 + ...+ δkwk + ε

So all our W variables are okay already.

Say we find a set of l instruments, l ≥ m. That is, Z̃ is a N by l matrix. Then a valid

instrument is Z = [Z̃W ], so that W is an instrument of itself. In practice what we do is

regress the following

xi = α + γ1z̃1 + γ2z̃2 + ...+ γlz̃l + γl+1w1 + γl+2w2 + ...+ γl+kwk + u

wi = α + γ1z̃1 + γ2z̃2 + ...+ γlz̃l + γl+1w1 + γl+2w2 + ...+ γl+kwk + u

for all xi and all wi (of course the αs and γs will be different for each regression, I am

just simplifying notation). Why do we include the wis? Well, it does not hurt: note that

wi is included as a regressor, so that the predicted ŵi will be wi itself.

Let γ̂wi
denote the estimated coefficients from regressing wi on Z = [Z̃W ] and γ̂xi

denote the estimated coefficients from regressing xi on Z = [Z̃W ]. Then
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x̂1 = Zγ̂x1 = Z(Z ′Z)−1Z ′x1 = Pzx1

x̂2 = Zγ̂x2 = Z(Z ′Z)−1Z ′x2 = Pzx2
...

x̂m = Zγ̂xm = Z(Z ′Z)−1Z ′xm = Pzxm

ŵ1 = Zγ̂w1 = Z(Z ′Z)−1Z ′w1 = Pzw1 = w1

...

ŵk = Zγ̂w1 = Z(Z ′Z)−1Z ′w1 = Pzwk = wk

so our vector of instruments (or predicted regressors is)

[Pzx1 Pzx2 ... Pzxm w1 ... wk]

= [Pzx1 Pzx2 ... Pzxm Pzw1 ... Pzwk]

= Pz[x1 x2 ... xm w1 ... wk]

= Pz[XW ]

and now we are ready to run the second stage.

Note: the standard errors from the second stage need to be corrected. STATA and

other softwares will do it for you. Why do we need correction? Intuitively, we lose a lot of

variation in the xs. Once we use x̂i instead of xi, we are losing a lot of variability (note:

all x̂ijs will be in the same line! where j denotes an individual in the sample.

5 Weak Instruments

Problems will arise when the instrument when this is only weakly correlated to the en-

dogenous variable. The estimated coefficient will be biased towards the OLS coefficient.

Furthermore, we do not know the correct asymptotic distribution of the parameters (for

inference).

From the wikipedia page,

“Instrumental variables estimates are generally inconsistent if the instruments are

correlated with the error term in the equation of interest. As Bound, Jaeger, and Baker

(1995) note, another problem is caused by the selection of ”weak” instruments, instru-

ments that are poor predictors of the endogenous question predictor in the first-stage

equation.[16] In this case, the prediction of the question predictor by the instrument will

be poor and the predicted values will have very little variation. Consequently, they are

unlikely to have much success in predicting the ultimate outcome when they are used to

replace the question predictor in the second-stage equation.

In the context of the smoking and health example discussed above, tobacco taxes
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are weak instruments for smoking if smoking status is largely unresponsive to changes

in taxes. If higher taxes do not induce people to quit smoking (or not start smoking),

then variation in tax rates tells us nothing about the effect of smoking on health. If

taxes affect health through channels other than through their effect on smoking, then

the instruments are invalid and the instrumental variables approach may yield misleading

results. For example, places and times with relatively health-conscious populations may

both implement high tobacco taxes and exhibit better health even holding smoking rates

constant, so we would observe a correlation between health and tobacco taxes even if it

were the case that smoking has no effect on health. In this case, we would be mistaken to

infer a causal effect of smoking on health from the observed correlation between tobacco

taxes and health.”

9


	Introduction to IVs
	Three examples
	Example 1: Institutions and economic success
	Example 2: Policemen and crime
	Example 3: Wages

	Estimating  IV  
	Estimating  IV  when there is more than one regressor: 2SLS
	2SLS in matrix notation
	What if some variables are exogenous but some are not?


	Weak Instruments

